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Comment on “Control of hyperchaos”
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In this Comment we show that the adaptive adjustment mechanism proposed by Shouliang, Shaoging, and
Henggiang Phys. Rev. B64, 056212(2001)] does not ensure that the feedback system will converge to the
desired orbit as the real system is, in general, not known.
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Ott, Grebogi, and YorkéOGY) [1] have proposed an ef- X4 1= F () i=(1— y)F(x,) + yx (4
ficient method of chaos control using a stabilizing feedback et " " "
control law formulated in terms of a parameter vector of thewhere y is a positive controlling parameter introduced.
system accessible for control. The control law is made active Note that system§ andF share exactly the same set of

when the system trajectory is near the neighborhood of thgyqq points and there exists for each and every poin of
desired orbit or fixed point. A variation of the OGY method

is given in[2] for the problem of stabilizing an unstable orbit a”‘{' F .the fO||OV\LII’]9 one-to-one cprrespondence hetween
embedded in a space of dimensN 1 near a fixed point at their eigenvaluesy;=(1-y)x;+y, j=1.2,... N. There-
which the dimension of the unstable manifold is aisdThe  fore, a fixed point of is stable if and only if max;|<1 and
system under consideration [if)] is represented by the map the eigenvalue§ can be adjusted by suitable choice of the

T:Xn—Xnt1, adaptive parametey.
_ In the method described if8], in order to stabilize the
Xn+1=F(Xa,P), (1) desired fixed point, the following control strategy is pro-
whereF:RNx R'— RN, xe RN is the state space vector and posed:

pne RNu is a parameter vector that can be externally modi- X+ 1=F (%) +M(F(X,) = X;) (5)
fied. For flows, map(1) is a Poincaremap. Letx?c be the et " A v
fixed point of map(1l) with p=0. Let J be the Jacobian whereM is anNX N matrix to be determined. Although Eq.
matrix of the map(1) with p=0 evaluated at the fixed point (5) takes the form of the AAM, the matri is not restricted
x2. It is assumed that proper coordinate changes have beén be a diagonal matrix. As in the AAM mechanism, systems
made so thax® is the origin of theN-dimensional space and (3) and (5) share exactly the same set of fixed points. For
that the eigenvectors of the Jacobian matrix are along theasy reference, the main steps of the control procedure pre-
coordinate axes of the space. As all the eigenvaludshafre ~ Sented in[3] are given. Let an infinitesimal deviation &f,
modulus greater than 1, the implicit function theorem can bdrom X; be éx,=x,—X;. Taking a linear approximation of
used to assert that the mé&p with sm%ll parametep has a  Ed. (5) in a neighborhoodV of the fixed pointx; yields
fixed pointx, in the neighborhood of_ .

The cont:ol law inp proposed i 2] ’is of the form 11~ 30X+ M (I =1) 0%, ©)

_p-11_1\-1/1_ wherelJ is the Jacobian of the diagonal syst€B at x; and

Pn=P (=D (kDX @ I is theN X N identity matrix. In practice, the matrixcan be
with P=(dx, /dp)p=o, —1<k<1, | anNXN identity ma- experimentally obtained via the well-known embedding
trix, and p renamed ap, to indicate that the parameter ad- technique. The control objective is to make Jim.| x|
justment is in thenth iteration of the map. With the param- —0. For this aim it is set
eter adjusted according to E(), iterations of the maj§l) B
converge to the fixed poimg monotonically, and therefore =0 (n="No) MXngy )
the stabilization is achieved.

In [3] the authors claimed that, differing from the well- : o _
known OGY method and its variants, an accessible paranff N, which satisfiesr(n)—0, asn— 0. Without loss of gen-
eter for control is not required to force the system solution tc€r2lity, one may choosey=0 hereafter. Substituting E¢®)
converge to their original periodic orbits. Their method N0 Ed.(7) and eliminatingéx, yields
comes from the original adaptive adjustment mechanism

wheredx, =X, —X;, X, € W, anda(n) is a scalar function
0 0 0

(AAM) [4]. The AAM method considers aN-dimensional :(‘T(n+1) (=1t )
nonlinear discrete system defined by a(n) ’
Xn+1=F(X,), (3)  where itis assumed that the matrix-(1) above is invertible
anda(n) is defined as
where F:RN—RN and x is as already defined. A modified
system is then constructed from EE), o(n)y=9", (9)
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whereyis a constant angte (—1,1). Making use of Eq.9), approaches 2.0, the fixed point will approdeh0.25,0.75.

the matrixM now becomes In the method described {2], using a parameter pertur-
bation as in Eq(2), the system will converge to the desired
M=(yl—=2)(J—1)"L (10 fixed point even if the matrixJ required for the control is

experimentally obtained and does not correspond exactly to
Although it is clear that no accessible parameter is used ithe real one. To clarify how this happens, we take the same
this method, it is not true that the solution will converge tosystem above and calculate the control law foaind g for

the original periodic orbit. If we compare E¢p) and stabilizing the system to the case of the fixed point
(—0.25,0.753, as in[3]. First, we obtain the matricekandP
Xn+1=F(Xy) + Uy, (11)  required for the control law2),
we can recognize the following feedback control law: 3 [ 1 —3}
-3 1)
Up=MF(X,) —MX,. (12

From Eq.(3), we see that the control signalat the timen 0 3
depends on the value of the state veotat the timen+1, ol
which is not available. Although we can make an approxi-

mation of it using the equation of the map, the solution of theSuppose that the matrixwas obtained experimentally and

feedback system will not converge to the desired orbit as thgyeg ot correspond to the one calculated above but it is
real system is, in general, not completely known. As theyien by

experimental system approaches the real system, the solution
will, in general, approach the original periodic orbit.

As an example, consider a system represented by the J=
same two-dimensional map, discussed3h

Wl

1 -4
-4 1

. 3 .
Xp 1= 1—a(x§+yﬁ)+ 0, Using k=% in Eq. (2), the control is of the form

1 49
Yn+1= —4Xayntd, (13 Pr=—3 1_6Xn_yn+a_ )
wherep=g=0 anda=2.
The system possesses a fixed point-a0.25,0.75. For q,=3| x,+ _—1y n 1_9 (15)
this fixed point we find " "167" 64)°
1 -3 Computational simulations show that the system will con-
J= 3 1 verge to the desired fixed point-0.25,0.75.

Suppose now that the matrR was also experimentally

Choosingy=0.5 in Eq.(9), we calculate the matrii obtained and is given by

required for the control, 0

~IN

M= P o

R |

-1 %] P=

Using both the experimental matric€sand J, the control

. . . law i i b
Suppose thaF required in Eq.(12) was experimentally awis now given by

obtained and it does not correspond exactly to(&8). Sup- 711 49
posea=2.1 in EqQ.(13). Then, using this fact and the calcu- pPn=— 5(1—6xn—yn+ ik
lated M, Eq. (11) becomes
1 2002y 11 2,02\ 7 -1 1
Xn+1 1 2(Xn+Yn) [1 2-1(Xn+Yn) Xn] qn:E Xn+1_6yn+& . (16)

+(_4Xnyn_yn)/6-

With this control law, the system will converge to

Yni1= —4XYn+t[1—2.2x3+y2) = X, 1/6— (— 4XnYn— Yn)- (—0.1797,0.8208 which is different from the original un-
(14) stable fixed poinf—0.25,0.75.
The control law proposed i8] relies on a linearization of

Computational simulations show that it will converge tothe map, using its Jacobian matdxand on an estimative of
(—0.1376,0.723)) which is different from the expected fixed the mapping function. The meth¢d] also relies on a linear-
point (—0.25,0.7%. As the parametea in the experimentdF ization of the map but uses a parameter perturbation of
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the unstable fixed point to construct a stable path to guide thinction is not needed to achieve the target, but errors in the
system to the target fixed point. parameter matri® are not allowed.
To conclude, ir{3] incomplete knowledge of the mapping  We acknowledge the financial support of this work by the

function leads to convergence to a fixed point that is differenFunda@o de Amparoa Pesquisa do Estado dé&®aulo
from the target, and ifi2] perfect knowledge of the mapping under Grant No. 01/04927-4.
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