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Comment on ‘‘Control of hyperchaos’’
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In this Comment we show that the adaptive adjustment mechanism proposed by Shouliang, Shaoqing, and
Hengqiang@Phys. Rev. E64, 056212~2001!# does not ensure that the feedback system will converge to the
desired orbit as the real system is, in general, not known.
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Ott, Grebogi, and Yorke~OGY! @1# have proposed an ef
ficient method of chaos control using a stabilizing feedba
control law formulated in terms of a parameter vector of
system accessible for control. The control law is made ac
when the system trajectory is near the neighborhood of
desired orbit or fixed point. A variation of the OGY metho
is given in@2# for the problem of stabilizing an unstable orb
embedded in a space of dimensionN>1 near a fixed point a
which the dimension of the unstable manifold is alsoN. The
system under consideration in@2# is represented by the ma
T:xn→xn11 ,

xn115F~xn ,p!, ~1!

whereF:RN3R1→RN, xPRN is the state space vector an
pnPRNu is a parameter vector that can be externally mo
fied. For flows, map~1! is a Poincare´ map. Letx

*
0 be the

fixed point of map~1! with p50. Let J be the Jacobian
matrix of the map~1! with p50 evaluated at the fixed poin
x
*
0 . It is assumed that proper coordinate changes have b

made so thatx
*
0 is the origin of theN-dimensional space an

that the eigenvectors of the Jacobian matrix are along
coordinate axes of the space. As all the eigenvalues ofJ have
modulus greater than 1, the implicit function theorem can
used to assert that the map~1! with small parameterp has a
fixed pointx* in the neighborhood ofx

*
0 .

The control law inp proposed in@2# is of the form

pn5P21~J2I !21~J2kI !xn ~2!

with P5(]x* /]p)p50 , 21,k,1, I an N3N identity ma-
trix, and p renamed aspn to indicate that the parameter a
justment is in thenth iteration of the map. With the param
eter adjusted according to Eq.~2!, iterations of the map~1!
converge to the fixed pointx

*
0 monotonically, and therefore

the stabilization is achieved.
In @3# the authors claimed that, differing from the we

known OGY method and its variants, an accessible par
eter for control is not required to force the system solution
converge to their original periodic orbits. Their metho
comes from the original adaptive adjustment mechan
~AAM ! @4#. The AAM method considers anN-dimensional
nonlinear discrete system defined by

xn115F~xn!, ~3!

where F:RN→RN and x is as already defined. A modifie
system is then constructed from Eq.~3!,
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xn115F̃~xn!ª~12g!F~xn!1gxn , ~4!

whereg is a positive controlling parameter introduced.
Note that systemsF and F̃ share exactly the same set

fixed points and there exists for each and every point oF

and F̃ the following one-to-one correspondence betwe
their eigenvaluesl̃ j5(12g)l j1g, j 51,2, . . . ,N. There-
fore, a fixed point ofF̃ is stable if and only if maxulju,1 and
the eigenvaluesF̃ can be adjusted by suitable choice of t
adaptive parameterg.

In the method described in@3#, in order to stabilize the
desired fixed point, the following control strategy is pr
posed:

xn115F~xn!1M „F~xn!2xn…, ~5!

whereM is anN3N matrix to be determined. Although Eq
~5! takes the form of the AAM, the matrixM is not restricted
to be a diagonal matrix. As in the AAM mechanism, syste
~3! and ~5! share exactly the same set of fixed points. F
easy reference, the main steps of the control procedure
sented in@3# are given. Let an infinitesimal deviation ofxn
from xf be dxn5xn2xf . Taking a linear approximation o
Eq. ~5! in a neighborhoodW of the fixed pointxf yields

dxn11'Jdxn1M ~J2I !dxn , ~6!

whereJ is the Jacobian of the diagonal system~3! at xf and
I is theN3N identity matrix. In practice, the matrixJ can be
experimentally obtained via the well-known embeddi
technique. The control objective is to make limn→`udxnu
→0. For this aim it is set

dxn5s~n2n0!dxn0
, ~7!

wheredxn0
5xn0

2xf , xn0
PW, ands(n) is a scalar function

of n, which satisfiess(n)→0, asn→0. Without loss of gen-
erality, one may choosen050 hereafter. Substituting Eq.~6!
into Eq. ~7! and eliminatingdxn0

yields

M5S s~n11!

s~n! D ~J2I !21, ~8!

where it is assumed that the matrix (J2I ) above is invertible
ands(n) is defined as

s~n!5gn, ~9!
©2003 The American Physical Society01-1
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whereg is a constant andgP(21,1). Making use of Eq.~9!,
the matrixM now becomes

M5~gI 2J!~J2I !21. ~10!

Although it is clear that no accessible parameter is use
this method, it is not true that the solution will converge
the original periodic orbit. If we compare Eq.~5! and

xn115F~xn!1un , ~11!

we can recognize the following feedback control law:

un5MF~xn!2Mxn . ~12!

From Eq.~3!, we see that the control signalu at the timen
depends on the value of the state vectorx at the timen11,
which is not available. Although we can make an appro
mation of it using the equation of the map, the solution of
feedback system will not converge to the desired orbit as
real system is, in general, not completely known. As
experimental system approaches the real system, the sol
will, in general, approach the original periodic orbit.

As an example, consider a system represented by
same two-dimensional map, discussed in@3#,

xn11512a~xn
21yn

2!1p,

yn11524xnyn1q, ~13!

wherep5q50 anda52.
The system possesses a fixed point at~20.25,0.75!. For

this fixed point we find

J5F 1 23

23 1 G .
Choosingg50.5 in Eq. ~9!, we calculate the matrixM

required for the control,

M5F21 1
6

1
6 21

G .

Suppose thatF required in Eq.~12! was experimentally
obtained and it does not correspond exactly to Eq.~13!. Sup-
posea52.1 in Eq.~13!. Then, using this fact and the calcu
latedM, Eq. ~11! becomes

xn115122~xn
21yn

2!2@122.1~xn
21yn

2!2xn#

1~24xnyn2yn!/6,

yn11524xnyn1@122.1~xn
21yn

2!2xn#/62~24xnyn2yn!.

~14!

Computational simulations show that it will converge
~20.1376,0.7230!, which is different from the expected fixe
point ~20.25,0.75!. As the parametera in the experimentalF
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approaches 2.0, the fixed point will approach~20.25,0.75!.
In the method described in@2#, using a parameter pertur

bation as in Eq.~2!, the system will converge to the desire
fixed point even if the matrixJ required for the control is
experimentally obtained and does not correspond exactl
the real one. To clarify how this happens, we take the sa
system above and calculate the control law forp and q for
stabilizing the system to the case of the fixed po
~20.25,0.75!, as in@3#. First, we obtain the matricesJ andP
required for the control law~2!,

J5F 1 23

23 1 G ,
P5F 0 1

3

1
3 0

G .

Suppose that the matrixJ was obtained experimentally an
does not correspond to the one calculated above but
given by

J5F 1 24

24 1 G .
Using k5 3

4 in Eq. ~2!, the control is of the form

pn523S 1

16
xn2yn1

49

64D ,

qn53S xn1
21

16
yn1

19

64D . ~15!

Computational simulations show that the system will co
verge to the desired fixed point~20.25,0.75!.

Suppose now that the matrixP was also experimentally
obtained and is given by

P5F 0 2
7

2
7 0

G .

Using both the experimental matricesP and J, the control
law is now given by

pn52
7

2 S 1

16
xn2yn1

49

64D ,

qn5
7

2 S xn1
21

16
yn1

19

64D . ~16!

With this control law, the system will converge t
~20.1797,0.8203!, which is different from the original un-
stable fixed point~20.25,0.75!.

The control law proposed in@3# relies on a linearization of
the map, using its Jacobian matrixJ, and on an estimative o
the mapping function. The method@2# also relies on a linear-
ization of the map but uses a parameter perturbation
1-2
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the unstable fixed point to construct a stable path to guide
system to the target fixed point.

To conclude, in@3# incomplete knowledge of the mappin
function leads to convergence to a fixed point that is differ
from the target, and in@2# perfect knowledge of the mappin
05820
e

t

function is not needed to achieve the target, but errors in
parameter matrixP are not allowed.
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